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Abstract
This paper proposes a fast 3-D facial shape recovery algorithm from a single image with general, Unknown lighting. To

derive the algorithm, we formulate a non-linear least-square problem with two-parameter vectors which are related to personal
identity and light conditions. We then Combine the spherical harmonics for the surface normal of a human face with tensor
algebra and show that in a certain condition, the dimensionality of the least-square problem can be further reduced to one-tenth
of the regular subspace-based model by using tensor decomposition (N-mode SVD), which speeds up the computations. To
enhance the shape recovery performance, we have incorporated prior information in updating the parameters. The proposed
algorithm takes less than 0.4 s to reconstruct a face in the experiment and shows a significant performance improvement over
other reported scheme.
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1. Introduction

Tensors (i.e., multiway arrays) provide an effective and faithful representation of structural properties
of the data, especially for multidimensional data or data ensembles affected by multiple factors [1]. For
instance, a video sequence can be represented by a third-order tensor with the dimensionality of (height×
width× time); an image ensemble measured under multiple conditions can be represented by a higher-
order tensor with the dimensionality of (pixel× person× pose× illumination) [3].

The goal of this paper is to provide a practical method, which can be applied to a single picture taken
by an ordinary camera and which achieves good accuracy in the recovery of facial shape in a short time.
When taking a picture using an ordinary camera in a general environment, control of the pose of a face
is easy but control of the light conditions is not. Hence, we assume that the face in an input image is in
frontal pose under general light conditions, which are unknown [4]. We then formulate a non-linear least-
square problem of two-parameter vectors by the use of the spherical harmonics for the surface normal of
a human face to handle the general light conditions, based on the Lambertian assumption [5]. In order to
speed up the calculation, we introduce tensor algebra and show how to reduce the dimensionality of the
least-square problem [6].

In this paper, after introducing the tensor completion problem, we state the tensorial face shape recov-
ery method for image recovery and implement it on some examples.

∗Corresponding author
Email addresses: ashojaeifard@ihu.ac (Ali Reza Shojaeifard ), hamidreza.yazdani@gmail.com (Hamid Reza Yazdani),
mshahrezaee@mail.bmn.ir (Mohsen Shahrezaee)

Received: November, 1, 2021 Revised: November, 15, 2021 Accepted: November, 20, 2021



ARSH, HRY, and MSH, Commun. Combin., Cryptogr. & Computer Sci., 1 (2021), 129–135 130

2. Preliminaries

Here, we use tensor algebra and explanation for standard operations such as inner product, F-norm,
and singular value decomposition (SVD). Therefore, we briefly state some preliminaries for tensor calcu-
lus and tensor completion. For more details and information, please read [1], and [2].

Definition 2.1. A tensor is a multidimensional array, with a dimensionality that is referred to as its order.
X stands for a Nth-order tensor (i.e. an N-way array) which is identified as N-dimensional or N-mode
tensor, too. Here, the word ”order” is used for referring the dimensionality of a tensor (like Nth-order
tensor), and the word ”mode” is employed for describing operations on a particular dimension (like
mode-n product)[2]. We denote the set of all n-dimensional tensors of order m by Tm,n. The tensor
A is called symmetric, if all ai1,...,in are invariant under any permutation of indices. The set of all real
n-dimensional symmetric tensors of order m is shown with Sm,n.

Definition 2.2. A fiber of a tensor is defined as a vector obtained by fixing all indices but one. Fibers are
generalizations of matrix columns and rows. Mode-n fibers are obtained by fixing all indices but nth.

Definition 2.3. Mode-n matricization (unfolding) of tensor X, denoted as X(n), is obtained by arranging
all mode-n fibers as columns of a matrix. The precise order in which fibers are stacked as columns is
not important as long as it is consistent. Figure 1 shows the fibers of 3-tensor. The folding is the inverse
operation of matricization/unfolding.

Figure 1: Fibers of a tensor from rank 3.

Definition 2.4. Mode-n product of tensor X and matrix A is denoted by X×n A, and defined by

Y = X×n A⇐⇒ Y(n) = AX(n). (2.1)

This product is commutative (when applied in distinct modes), i.e.

(X×n A)×m B = (X×m B)×n A. (2.2)

for m 6= n.

Definition 2.5. The inner product of two tensors X and Y of same size is defined as < X, Y >. Unless
otherwise specified, we treat it as dot product defined as follows [3]:

< X, Y >=
n∑

i1···im=1

xi1···imyi1···im . (2.3)

The F-norm of a tensor X (Generalized from matrix Frobenius norm), is defined as [2]:

||X||F :=
√
< X,X > =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

X2
i1,i2,··· ,iN

. (2.4)
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Definition 2.6. Suppose X is a symmetric tensor of Sm,n, r is a positive integer number and u(k) ∈ Rn

for k ∈ {1, · · · , r} exist such that

X =

r∑
k=1

(u(k))m. (2.5)

Therefore, X is called a completely positive tensor (CP), and Eq.(3) is a CP-decomposition of X (For example,
see Figure 2). In the CP-decomposition of Eq.(3), the minimum of r is called CP-rank of X [5].

Definition 2.7. In the general, The Singular Value Decomposition (SVD) is a factorization of a real or complex
matrix that generalizes the eigen decomposition, which only exists for square normal matrices to any m×
n matrix via an extension or the polar decomposition. In the tensor calculus, similar concepts proposed
as follows:

Where Ui (for i = 1, 2) are orthonormal and can be extended to orthonormal basis, SR is a diagonal
and positive definite of dimension R, with R as the number of non-zero eigenvalues of tensor X∗X and
V = [V1,V2] is a unitary tensor of rank(X) [1]. The representation of SVD shown in figure 2.

Figure 2: The representation of SVD.

Definition 2.8. Given a low-rank (either CP rank or other ranks) tensor T with missing entries, the goal
of completing it can be formulated as the following optimization problem:

MinXrank∗(X),
Subject to XΩ = TΩ.

Where rank∗(X) denotes a specific type of tensor rank based on the rank assumption of given tensor T ,X
represents the completed low rank tensor of T and Ω is an index set of observations. For this paper, the
specific rank is completed positive (CP) rank [3].
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Definition 2.9. The generalized of SVD or N-mode SVD (also named Higher-order SVD ) is defined as
[3]:

D = G×1 U1 ×2 · · · ×N UN. (2.6)

Where G is the core tensor and Uk is derived from SVD of

D(k) = Uk
∑
k

VTk . (2.7)

and G is defined as
D = G×1 U

T
1 ×2 · · · ×N UTN. (2.8)

HoSVD of 3-tensor shown in figure 3.

Figure 3: HoSVD decomposition of 3-tensor.

3. Algorithm Implementation

An image of a human face depends on various parameters, such as its 3D structure, head pose, light
and exposure, surface reflection property, etc. This picture can be approximated as linear equation i.e.,

I(x,y) ≈ f(x,y)TS. (3.1)

Where I(x,y) is the brightness of the pixel (x,y), s ∈ Rnl is the light condition vector and f(x,y) is a nl-
dimensional vector which is related to the surface characteristics and is either the scaled normal (nl = 3)
or the spherical harmonic representation (nl = 4 or 9) at the pixel (x,y). Figure 4 shows the main process
of the algorithm.

Figure 4: The schematic view of algorithm.

Figure 5 shows a 3D-face reconstruction. The coordinate plane part of the face is cut in 3D and
represented by the tensor representation methods (with various tensor analysis).

The overall procedure for the proposed method has two steps: modeling and Reconstruction. In the
first step, we apply the affine transform to the harmonic images of each training sample, so that the centers
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Figure 5: The samples of 3D face reconstructions by tensorial representation methods.

of the eyes and mouth of all samples are located at the same positions. After that, calculate the mean
tensor of the flat face (F) and apply N-mode SVD to it (Q). Now, the train image is stored by the HoSVD
version of the mean tensor. In the second step, apply the affine transform to a test image, the resultant
image is denoted as I’. Now, calculate in the reduced dimensional space and denote its tensorized version
as L. After that, if the norm distance between Q and L is minimized, the best result is obtained, otherwise,
search the best Q for this purpose. In fact, the main problem is minimizing the problem of norm distance
between L, Q.

For our experiments, we run MATLAB R2020a on the laptop system (Asus A53sv) with configuration
as shown in table 1.

Table 1: The configuration of experiment system.

Laptop Asus A53sv

CPU Ci7-2670QM (6MB Smart Cache)
No of Cores 4 Physical/8 Thread
Frequency 2.2-3.1 GHz
RAM 16 GB (DDR3/1600 MHz)
H.D.D. 750 GB (7200 rpm)
GPU GeForce Gt 630m (2GB/96 Cuda Cores)
Performance (FP32) 367 Gflops
O.S. Win 10 Pro 64 bit

After importing the original picture and running the algorithm, the results in figure 6 are obtained.
For another example, we apply the algorithm on the other images by the different poses of head,

background, and exposure. The result is shown in figure 7.

4. Conclusions

Practical experiments show that the proposed algorithm takes only a few hundredths to a few tenths
of a second to reconstruct a face, and this improves performance dramatically. Studies show that the
efficiency, accuracy, and speed of this method in recovering the shape of the face in different exposure



ARSH, HRY, and MSH, Commun. Combin., Cryptogr. & Computer Sci., 1 (2021), 129–135 134

Figure 6: The implementation of Facial Shape Recovery by Tensorial methods. (a): original photo, (b): RR-tensor representation
output and (c): SIFR-tensor representation output.

Figure 7: The implementation of Facial Shape Recovery by Tensorial methods. (a): original photo, (b): RR-tensor representation
output and (c): SIFR-tensor representation output.

conditions is very high. The image space is created by selecting a suitable nonlinear function and ap-
proximating a set of multiplicative transformed samples. The final image is the result of minimizing the
sum of all errors at multiple vertices. We use various tensor analyses such as CP and Tucker to reduce
unwanted changes and improve efficiency. The experimental results show that the proposed algorithm
has high reconstruction accuracy even in the presence of shadows in different exposure conditions and
the processing speed is high enough for instantaneous (real-time) applications. Rapid reconstruction of
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face shapes from different angles and with different expressions can be a future research field.
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